对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。7.什么是数据治理?(Data Governance)数据治理是指为确保数据安全、私有、准确、可用和易用所执行的所有操作。它包括人们必须采取的行动、必须遵循的流程以及在整个数据生命周期中为其提供支持的技术。数据治理意味着设置适用于收集、存储、处理和处置数据的内部标准,即数据策略。它规定了谁可以访问哪些数据以及哪些数据应受治理。数据治理还涉及遵循行业协会、政府机构和其他利益相关者设定的外部标准。数据治理包含以下几方面内容1、确保有效助力业务的决策机制和方向;2、确保绩效和合规进行监督;3、确保信息利益相关者的需要评估,以达成一致的企业目标,这些企业目标需要通过对信息资源的获取和管理实现。8.什么是机器学习?机器学习(ML)是人工智能(A)的一个分支,旨在构建能够根据所使用的数据进行学习或改进性能的系统。人工智能是一个宽泛的术语,指的是模仿人类智能的系统或机器。机器学习和人工智能这两个术语经常被相提并论,有时甚至互换使用,但它们的含义并不相同。其中一个重大区别是,所有的机器学习都是AI,但不是所有的AI都是机器学习。如今,机器学习无处不在。当我们与银行交互、在线购物或使用社交媒体时,机器学习算法会发挥作用,让我们获得高效、顺畅和安全的体验。目前,机器学习及其相关技术正迅速发展,对于它的强大功能,我们只是略知一二而已。9.什么是人工智能?人工智能的范围可以说很大、很泛,从表面上可以理解为机器的智能化,让机器像人一样能解决思考解决问题。其实人工智能核心技术包括很多的方面:推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。可以说机器学习和深度学习都是人工智能这个大主题下的一部分吧,深度学习又可以归为机器学习的一部分。简而言之,机器学习和深度学习是人工智能的两个关键的技能,看人工智能的发展历史,人工智能三大研究内容:计算机模仿人类的思考,对环境的感知和动作的实现是人工智能的三大研究内容。人T知台能
暂无评论内容